Hopf Algebra Equivariant Cyclic Cohomology, K-theory and Index Formulas

نویسندگان

  • Sergey Neshveyev
  • Lars Tuset
چکیده

For an algebra B with an action of a Hopf algebra H we establish the pairing between equivariant cyclic cohomology and equivariant K-theory for B. We then extend this formalism to compact quantum group actions and show that equivariant cyclic cohomology is a target space for the equivariant Chern character of equivariant summable Fredholm modules. We prove an analogue of Julg’s theorem relating equivariantK-theory to ordinaryK-theory of the C∗-algebra crossed product, and characterize equivariant vector bundles on quantum homogeneous spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hopf Algebra Equivariant Cyclic Cohomology, K-theory and a q-Index Formula

For an algebra B coming with an action of a Hopf algebra H and a twist automorphism, we introduce equivariant twisted cyclic cohomology. In the case when the twist is implemented by a modular element in H we establish the pairing between even equivariant cyclic cohomology and equivariant K-theory for B. We then extend this formalism to compact quantum group actions and show that our cyclic coho...

متن کامل

Equivariant Cyclic Cohomology of Hopf Module Algebras

We introduce an equivariant version of cyclic cohomology for Hopf module algebras. For any H-module algebra A, where H is a Hopf algebra with S2 = idH we define the cocyclic module C ♮ H(A) and we find its relation with cyclic cohomology of crossed product algebra A ⋊ H. We define K 0 (A), the equivariant K-theory group of A, and its pairing with cyclic and periodic cyclic cohomology of C H(A).

متن کامل

Cyclic Cohomology of Hopf Module Algebras

We define an equivariant K0-theory for Yetter-Drinfeld algebras over a Hopf algebra with an invertible antipode. We show that there exists a pairing, generalizing Connes’ pairing, between this theory and a suitably defined Hopf algebra equivariant cyclic cohomology theory.

متن کامل

Secondary Characteristic Classes and Cyclic Cohomology of Hopf Algebras

Let X be a manifold on which a discrete (pseudo)group of diffeomorphisms Γ acts, and let E be a Γ-equivariant vector bundle on X. We give a construction of cyclic cocycles on the cross product algebra C∞ 0 (X)o Γ representing the equivariant characteristic classes of E. Our formulas can be viewed as a higher-dimensional analogue of Connes’ Godbillon-Vey cyclic cocycle. An essential tool for our...

متن کامل

Ring structures of mod p equivariant cohomology rings and ring homomorphisms between them

In this paper, we consider a class of connected oriented (with respect to Z/p) closed G-manifolds with a non-empty finite fixed point set, each of which is G-equivariantly formal, where G = Z/p and p is an odd prime. Using localization theorem and equivariant index, we give an explicit description of the mod p equivariant cohomology ring of such a G-manifold in terms of algebra. This makes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008